Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Mult Scler Relat Disord ; 70: 104484, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2244766

ABSTRACT

BACKGROUND: Adequate response to the SARS-CoV-2 vaccine represents an important treatment goal in caring for patients with multiple sclerosis (MS) during the ongoing COVID-19 pandemic. Previous data so far have demonstrated lower spike-specific IgG responses following two SARS-CoV-2 vaccinations in MS patients treated with sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb) compared to other disease modifying therapies (DMTs). It is unknown whether subsequent vaccinations can augment antibody responses in these patients. OBJECTIVES: The goal of this observational study was to determine the effects of a third SARS-CoV-2 vaccination on antibody and T cell responses in MS patients treated with anti-CD20 mAb or S1P receptor modulators. METHODS: Vaccine responses in patients treated with anti-CD20 antibodies (ocrelizumab and ofatumumab) or S1P receptor modulators (fingolimod and siponimod) were evaluated before and after third SARS-CoV-2 vaccination as part of an ongoing longitudinal study. Total spike protein and spike receptor binding domain (RBD)-specific IgG responses were measured by Luminex bead-based assay. Spike-specific CD4+ and CD8+ T cell responses were measured by activation-induced marker expression. RESULTS: MS patients and healthy controls were enrolled before and following SARS-CoV-2 vaccination. A total of 31 MS patients (n = 10 ofatumumab, n = 13 ocrelizumab, n = 8 S1P) and 10 healthy controls were evaluated through three SARS-CoV-2 vaccinations. Compared to healthy controls, total spike IgG was significantly lower in anti-CD20 mAb-treated patients and spike RBD IgG was significantly lower in anti-CD20 mAb and S1P-treated patients following a third vaccination. While seropositivity was 100% in healthy controls after a third vaccination, total spike IgG and spike RBD IgG seropositivity were lower in ofatumumab (60% and 60%, respectively), ocrelizumab (85% and 46%, respectively), and S1P-treated patients (100% and 75%, respectively). Longer treatment duration, including prior treatment history, appeared to negatively impact antibody responses. Spike-specific CD4+ and CD8+ T cell responses were well maintained across all groups following a third vaccination. Finally, immune responses were also compared in patients who were vaccinated prior to or following ofatumumab treatment. Antibody responses were significantly higher in those patients who received their primary SARS-CoV-2 vaccination prior to initiating ofatumumab treatment. CONCLUSIONS: This study adds to the evolving understanding of SARS-CoV-2 vaccine responses in people with MS treated with disease-modifying therapies (DMTs) known to suppress humoral immunity. Our findings provide important information for optimizing vaccine immunity in at-risk MS patient populations.


Subject(s)
COVID-19 , Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators , Humans , Immunity, Humoral , COVID-19 Vaccines , Sphingosine-1-Phosphate Receptors , SARS-CoV-2 , Longitudinal Studies , Pandemics , Vaccination , Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Viral
3.
J Infect Dis ; 2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2244144

ABSTRACT

Interferon (IFN)-specific autoantibodies have been implicated in severe COVID-19 and have been proposed as a potential driver of the persistent symptoms characterizing Long COVID, a type of post-acute sequelae of SARS-CoV-2 infection (PASC). We report than only two of 215 SARS-CoV-2 convalescent participants tested over 394 timepoints, including 121 people experiencing Long COVID symptoms, had detectable IFN-α2 antibodies. Both had been hospitalized during the acute phase of the infection. These data suggest that persistent anti-IFN antibodies, although a potential driver of severe COVID-19, are unlikely to contribute to Long COVID symptoms in the post-acute phase of the infection.

4.
Elife ; 112022 10 27.
Article in English | MEDLINE | ID: covidwho-2155745

ABSTRACT

Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.


Subject(s)
Autoimmune Diseases , Bacteriophages , COVID-19 , Humans , Autoantibodies , Autoantigens/metabolism , Autoimmunity , Bacteriophages/metabolism , Homeodomain Proteins , Immunoprecipitation , Proteome
5.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Article in English | EuropePMC | ID: covidwho-1918542

ABSTRACT

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

6.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1701616

ABSTRACT

BACKGROUNDVaccine-elicited adaptive immunity is a prerequisite for control of SARS-CoV-2 infection. Multiple sclerosis (MS) disease-modifying therapies (DMTs) differentially target humoral and cellular immunity. A comprehensive comparison of the effects of MS DMTs on SARS-CoV-2 vaccine-specific immunity is needed, including quantitative and functional B and T cell responses.METHODSSpike-specific Ab and T cell responses were measured before and following SARS-CoV-2 vaccination in a cohort of 80 study participants, including healthy controls and patients with MS in 6 DMT groups: untreated and treated with glatiramer acetate (GA), dimethyl fumarate (DMF), natalizumab (NTZ), sphingosine-1-phosphate (S1P) receptor modulators, and anti-CD20 mAbs. Anti-spike-Ab responses were assessed by Luminex assay, VirScan, and pseudovirus neutralization. Spike-specific CD4+ and CD8+ T cell responses were characterized by activation-induced marker and cytokine expression and tetramer.RESULTSAnti-spike IgG levels were similar between healthy control participants and patients with untreated MS and those receiving GA, DMF, or NTZ but were reduced in anti-CD20 mAb- and S1P-treated patients. Anti-spike seropositivity in anti-CD20 mAb-treated patients was correlated with CD19+ B cell levels and inversely correlated with cumulative treatment duration. Spike epitope reactivity and pseudovirus neutralization were reduced in anti-CD20 mAb- and S1P-treated patients. Spike-specific CD4+ and CD8+ T cell reactivity remained robust across all groups, except in S1P-treated patients, in whom postvaccine CD4+ T cell responses were attenuated.CONCLUSIONThese findings from a large cohort of patients with MS exposed to a wide spectrum of MS immunotherapies have important implications for treatment-specific COVID-19 clinical guidelines.FUNDINGNIH grants 1K08NS107619, K08NS096117, R01AI159260, R01NS092835, R01AI131624, and R21NS108159; NMSS grants TA-1903-33713 and RG1701-26628; Westridge Foundation; Chan Zuckerberg Biohub; Maisin Foundation.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antibodies, Viral/immunology , Humans , Multiple Sclerosis/immunology
7.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1482083

ABSTRACT

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Subject(s)
Antibodies, Viral/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , COVID-19/complications , COVID-19/immunology , Mental Disorders/cerebrospinal fluid , Mental Disorders/etiology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Adolescent , Animals , Anxiety/etiology , Anxiety/psychology , Autoimmunity , Female , Humans , Male , Marijuana Smoking/immunology , Mice , Movement Disorders/etiology , Neurologic Examination , Transcription Factor 4/immunology
8.
Mult Scler Relat Disord ; 56: 103251, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401726

ABSTRACT

BACKGROUND: The immunogenicity of COVID-19 vaccine among patients receiving anti-CD20 monoclonal antibody (Ab) treatment has not been fully investigated. Detectable levels of SARS-CoV-2 immunoglobulin G (IgG) are believed to have a predictive value for immune protection against COVID-19 and is currently a surrogate indicator for vaccine efficacy. OBJECTIVE: To determine IgG Abs in anti-CD20 treated patients with multiple sclerosis (MS). METHOD: IgG Abs against SARS-CoV-2 spike receptor-binding domain were measured with the SARS-CoV-2 IgG II Quant assay (Abbott Laboratories) before and after vaccination (n = 60). RESULTS: 36.7% of patients mounted a positive SARS-CoV-2 spike Ab response after the second dose of vaccine. Five patients (8.3%) developed Abs >264 BAU/mL, another 12 patients (20%) developed intermediate Abs between 54 BAU/mL and 264 BAU/mL and five patients (8.3%) had low levels <54 BAU/mL. Of all seropositive patients, 63.6% converted from seronegative to seropositive after the 2nd vaccine. CONCLUSION: Our study demonstrates decreased humoral response after BNT162b2 mRNA SARS-CoV-2 vaccine in MS patients receiving B-cell depleting therapy. Clinicians should advise patients treated with anti-CD20 to avoid exposure to SARS-CoV-2. Future studies should investigate the implications of a third booster vaccine in patients with low or absent Abs after vaccination.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccine Efficacy
9.
Nature ; 591(7848): 124-130, 2021 03.
Article in English | MEDLINE | ID: covidwho-1368933

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunology
12.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213573

ABSTRACT

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

13.
Am J Respir Crit Care Med ; 204(4): 421-430, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1180997

ABSTRACT

Rationale: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator-induced lung injury. eCypA (extracellular CypA [cyclophilin A]) is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to coronavirus disease (COVID-19). Objectives: To explore the involvement of eCypA in the pathophysiology of ventilator-induced lung injury. Methods: Mice were ventilated with a low or high Vt for up to 3 hours, with or without blockade of eCypA signaling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretching to explore the cellular source of eCypA, and CypA concentrations were measured in BAL fluid from patients with acute respiratory distress syndrome to evaluate the clinical relevance. Measurements and Main Results: High-Vt ventilation in mice provoked a rapid increase in soluble CypA concentration in the alveolar space but not in plasma. In vivo ventilation and in vitro stretching experiments indicated the alveolar epithelium as the likely major source. In vivo blockade of eCypA signaling substantially attenuated physiological dysfunction, macrophage activation, and MMPs (matrix metalloproteinases). Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated concentrations of eCypA within BAL fluid. Conclusions: CypA is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. eCypA represents an exciting novel target for pharmacological intervention.


Subject(s)
Anti-Inflammatory Agents/immunology , Cyclophilin A/immunology , Inflammation/immunology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/immunology , Respiratory Mucosa/immunology , Ventilator-Induced Lung Injury/immunology , Ventilator-Induced Lung Injury/physiopathology , Animals , COVID-19/genetics , COVID-19/physiopathology , Cells, Cultured/drug effects , Cyclophilin A/pharmacology , Humans , Inflammation/physiopathology , Male , Mice , Models, Animal , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Ventilator-Induced Lung Injury/genetics
14.
Res Sq ; 2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-903184

ABSTRACT

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a wholeblood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferonstimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and autodirected antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.

15.
Cell Rep Med ; 1(7): 100123, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-793949

ABSTRACT

Comprehensive understanding of the serological response to SARS-CoV-2 infection is important for both pathophysiologic insight and diagnostic development. Here, we generate a pan-human coronavirus programmable phage display assay to perform proteome-wide profiling of coronavirus antigens enriched by 98 COVID-19 patient sera. Next, we use ReScan, a method to efficiently sequester phage expressing the most immunogenic peptides and print them onto paper-based microarrays using acoustic liquid handling, which isolates and identifies nine candidate antigens, eight of which are derived from the two proteins used for SARS-CoV-2 serologic assays: spike and nucleocapsid proteins. After deployment in a high-throughput assay amenable to clinical lab settings, these antigens show improved specificity over a whole protein panel. This proof-of-concept study demonstrates that ReScan will have broad applicability for other emerging infectious diseases or autoimmune diseases that lack a valid biomarker, enabling a seamless pipeline from antigen discovery to diagnostic using one recombinant protein source.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Male , Middle Aged , Peptide Library , Protein Array Analysis , Proteome/immunology , Reproducibility of Results , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Proteins/immunology
16.
mSphere ; 5(5)2020 09 16.
Article in English | MEDLINE | ID: covidwho-772263

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual's seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies.IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Peptidyl-Dipeptidase A/immunology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antigens, Viral/immunology , Binding Sites/immunology , COVID-19 , Coronavirus Infections/prevention & control , High-Throughput Screening Assays/methods , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Protein Binding , Protein Domains/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL